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1 Introduction

[ RDR memo* cylindrically symmetrical model, cal culated radiation forces and torques on conical
and flattop surfaces, getting precession rates. Introduced idea of nulling precession by adjusting
“skirt” angle. Arguesfor faster spin.] [ John’s two memaos. |

[1. Full dynamical model. 2. Solar wind. 3...]

2 Equations of Motion for a Rigid Body

The equations of motion of arigid body can be written?

|xa

|y%Qy+(|x- |z)QxQz- Ky=0 ¥ (1)

|z%Qz+(|y- |x)Qny-Kz:O i)
where the frame of reference is fixed to the body with origin at the center of mass (the body frame).
The (x,y, z) axes are coincident with the principal axes of the body (i.e., the axes for which theinertia
tensor is diagonal). (I x, ly, | z) are the principa
moments of inertia of the body, (Qx, Qy, Qz) arethe
angular velocities of the body about the principal axes,
and (Kx, Ky, Kz) are the components of the external
torques acting on the body as viewed in the body
frame of reference.

de"‘(lz'ly)Qsz' Kx=0 :J
i

7 Figurel

2.1 Euler Angle Rotations between the Fixed and
Body Frames

The particular Euler angles (¢, v, 0) shown in Figure 1
are a convenient choice. The transformation matrix

((ﬂ,v/.e)= 2(9) X(W) z((ﬂ) (2

which rotates the fixed coordinate frame (X, Y, Z) to
the body frame,

'R.D. Reasenberg (1997). “Effects of Radiation Pressure on the Rotation of FAME”, SAO-TM97-03.
%e.g., H. Goldstein (1980). Classical Mechanics, 2nd edition, Addison-Wedley.
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X X

y|= (py,0)] Y €©)
z Z
where
cosf snd O
20) =] - sin@ cosf O (4)
0 0 1
1 0 0
x(@)=| 0 cosf sind (5)
0 - sinf cosd
is
cost cosp - sinfl cosy sing  cosf sing +sinf cosy cose  Sinf siny
(p,w,0) =] - sinf cosp - cosl cosy sing - sind sing +cos cosy cose cosf siny | (6)

Siny sing - Siny cosg Cosy

We call ¢ the node angle, v theinclination angle, and 6 the azimuthal angle; or node, inclination, and
azimuth for short.

2.2 The Angular Velocity Vector Components in the Body Frame

The angular velocity vector may be decomposed into components along each of the rotation axes used
to construct the transformation matrix. If we transform those components to the body frame, then we
can express the angular velocity vector in the body framein terms of the Euler angles (¢, v, 0). The
angular velocity vectors around the three rotation axes, as viewed in the body frame, are

[0 ] [ sinf siny u
. dp _dp . i
Qp = 4 Ow,0) 0| = 4| cosfsiny i
1 CoSy/ i
(1] [ cosd ’
~ dy dy : L
Qy = T (0,0,0)| 0 | = rils sinf y @)
. 0] . O :
do 0 | do 0 :
) _do .
- p
Combining the x, y, and z components, we have
LU dy
o, gt sinf siny + gt cosd
Qp+Qy,+Qp=| Qy |= d—fcos@sinz// - d—%t”sinﬁ (8)
{2 D e + 90
dt OV T Tt
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2.3 Riagid Body Equations of Motion

Inserting eg. (8) into the Euler equations (1), we find

d2y d?p lz-ly (dp2 Ix-ly+Hz gg dp ] .
gz Cost+ gz sinb siny +| —— (dt] oSy +— — 4 q | SiNw cost
Ixty-12 dp Ix-ly*lz o\ dy Kx _
+( Ik dt COS¥ - 7, dt)dt snf- T-=0

dt

d2y d2p Ix-1z ((do Ix-1y-1z dg do .
s Y Sng+—% 02 cosHS|ny/+[ [ ) COSY +—T—dt at siny sind

ly

IxHy-1z dp 'X"V"Zﬁ)d_l/f Ky _

+( Iy dt S8V T ot €080 - 7 =0
d_29+d_ |x'|y(d_§0)2 0 sind sin2
Gtz oSy - — ) cosfsing siny

ly o op Ikl y+|z)dq/ dy |x-|y(d_tp)2 . Kz
+(2—IZ sin<f - P g a SNy + U cos6 sinf - P

(9)

Egs. (9) aretherigid body equations of motion expressed in the particular set of Euler anglesillus-

trated in Figure 1.

2.4 Equations of Motion for a Symmetric Top

Consider the case where two of the principal moments of inertia are the same, say Ix = ly =

Definetheratio

Then egs. (9) become the rigid symmetric top equations of motion,

dzl//

dg do dp\2
Az B (

d2p .
cos0+ gz Sin0 smz//+[(1 B - E) COSz//]smy/ cosd
dy ., K
+[(1+ﬁ)7fcosv/- (1- ﬁ)%]%{sm@ - ﬁ:o

dzl// d%p do de de 2 . .
-z SN0+ 5z Y cosf siny - [(1'ﬂ)ﬁﬁ'ﬂ[ﬁj cosy |siny sinf

[(1+ﬂ) ~t cosy - (1- ﬂ) ] o cosd - :f; =0

d20 dp dy . Kz  _
F"'FCOS‘// -t o SNV - T- Py =0
Notice that the third equation of egs. (11) can be written
d(do, do )
dt(dt Tt V) T By ﬁ)lxy

Ly

(10)

(12)
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When Kz =0, thisis the statement of conservation of angular momentum about the symmetry axis.

Egs. (11) may be manipulated and expressed as a system of first-order ODEs:

& 2 i

at ~ %0 . !
smy/%Q(,, = [(- pay- @+p) cosyQ,|Qy + sznQIIyKyCOSH J{/ (13)

%QV, = [BoosyQ2- (1- p)QyQy|siny + KXCOSQI;yKySinQ J,r

siny/%QH = [(1+Bcos?y)Qy- (1- B)cosy Q| Qy, :

' Kxsing + Ky cosé '

L

The symmetric top equationsin the form of egs. (13) are convenient for implementing in a numerical
program. The program SymTop?, discussed later, uses egs. (13). Applying egs. (13) to a particular
physical problem consists of specifying the torques, which is the subject of the next section.

3 Torques Due to Pressure Incident on an Attached Truncated Cone

Suppose our symmetric top isin the shape of acyl-
inder, and that this cylinder isimmersed in an envi-
ronment with pressures, for example solar radiation
and solar wind hitting a spacecraft. Further, sup-
pose we shield the spacecraft with a conical skirt
attached at one end of the craft and sweeping back
with coneanglea. The shield istherefore afrus-
tum of acone, as shown in Figure 2 (sans space-
craft).

3.1 A St of Conical Coordinates

For performing integrals of radiation and solar wind
pressure over the conical surface, it will be conven-
ient to define a set of conical coordinates (p, 7, a ).

L et the coordinate origin be at the vertex of the
cone, which is adistance d from the top of the frus-
tum, which isin turn adistance h from the center of
mass. Define the set of unit basis vectors (p, 77, @),
as shown in Figure 2.

3SymTop is available at http://aa.usno.navy.mil/SymTop/

z Figure2

page 4 of 10



It is easy to show that the equation for the conical surfaceis

_r-a
tana—h_ 2

or
x2+y2- [a+(h- 2tana]®=0

The body frame coordinates are obtained from the conical coordinates via

X = p sina cosy IU

y = pSina sing y

— a |

Z‘h+tana p COSa b

Finally, the rotational transformation between the conical and body frames is accomplished via

X p
y|= (a,n)]| 7
2 a

where
Sina cosy - Siny COSa COSy
(a,7)=| sSina siny cosy cosa siny
- CoSa 0 sina

3.2 Force Components Due to Radiation Pressure on a Surface

(14)

(15

(16)

(17)

(18)

Consider Figure 3, whered X isan infinitesimal area on the conical surface. Incident radiation will

produce perpendicular and parallel force components as shown. We have, by inspection,

dF,

(1+A)cosy
(1- A)siny

]:P-dz-lcosyl-[

(19)

where A is the surface albedo (i.e., radiation reflection efficiency: A € [0, 1]), P isthe magnitude of
the incident pressure, and gis the angle between the pressure vector and the surface normal, given by

cosy=P-N (20)

V)

Now, in thelocal conical coordinate frame, the direc- % ‘\N Figure3
tion perpendicular to the surfaceisjust a = N, while the
direction parallel to the surface and in the plane defined

- ~. P-(PN)N
by PandNis # The denominator of the

|- (PN
latter can be written C
A N R ®
|P- (P-N)N| =|PxN| =Psiny (21) dF,
Hence, eg. (19) becomes, in the conical frame, : v é@FA
d
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dF), : 0 p Iu
dF, |=P-dZ-lcosyl-i(1+A)cosy-| O |+(1- A) Ty y (22)
drF, % 1 Tg - COSY i)
where
P P P,
npzp—p nnzp—” nazp (23)

For ssimplicity, we now assume that the pressures are always incident on the “top” of the conical sur-
face, that is,

Pe{ 3| P-N<0} (24)
Then we may define the incidence angle ¢ (see Fig. 3),
cosy =-(P-N)=- cosy (25)
The infinitesimal force components, egs. (22), become, after some simplification,
de (1 - A) ﬂfp
dF, |=P-dXZ-cosy- (1- Ay (26)
drF, (1- A)mg- 2Acosy

3.3 Force and Torque Components Due to Radiation Pressure on the Cone Surface

L et the pressure vector components in the fixed frame be (Px, Py, Pz). Then the componentsin the
conical frame are

7'Cp 7[)(
ay |= (@)t (p,p,0)| ny 27)
Ta Tz

Since P- N = P, the component of P along d, we have, from eq. (27),

cosy = -FF:—“ = - {cosa[cosy (cosf cosep - Sinf cosy sing)
- siny (sin@ cosg + cosf cosy sing)] +sina siny sing} nx
- {cosa[cosy (cos@ sing +sinf cosy cosp) (28)

- siny(sind sing - cos cosy cosp)] - sina siny cose} ny
-[cosa (cosy sing siny +siny cos siny) +sina cosy] 7
where we have defined

Px Py Pz
nX=p~ AY=p MZ=p (29)

We are now in aposition to integrate egs. (26) over the surface of the cone,

Fp 21 S (1- Ac)zy
Fy :Pj0 jf oSy - (1- Ay -pSina dp dy (30)
= (1- Ac)mg - 2Ac cosy

where Ac is the albedo of the conical surface, eq. (27) is used for [, 7y, 74 |, €g. (28) is used for
cosy, and the integration limits are defined in Figure 2. The torque, in the conical coordinate frame,
isthen
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Kp on f+S (1- Ac)my
Ky :50 ff Fx (1- Ac) 7y - COSy - p Sina dp dy (31)
Kqg (1- Ac) g - 2Ac cosy

where T is the vector from the center of massto a point on the cone. Using egs. (16) and (18), we
have

; cos?a
X p Sina cosy -hcosa - a~ ~+p
r= (a,;y)'l y |= (a,n)'l p sina Sinl’] = 0 (32)
z h + g - » cosa hsina +acosa
Substituting eq. (32) into eq. (31), performing the integral in p fromf = &~ tof+S= Si—lrjm, and sim-
plifying, we find the result
Kp o - anﬂ
Ky |=P(b- a) jo Bom) +B1Qma cosy - 2B1Ac oSy | cosy dy (33)
Ka Bo(1- Ac)Pycosy
where
- 1_1 2(,52 2 U
By = ZsinzG[U(a+b)0050n- s(@ +ab+b )] I“
y (34)
Bz = %SiﬁaQU(a-'-b) ;3
and
Q=1- Ac U=hsina+acosa (35)
Now make use of eg. (18) to transform back to the Cartesian body frame.
K)( 20 - BZ7Z;7
Ky |[=P(b- a) jo (a,n7)| Bomp +B1QmgcoSy - 2B1Ac COSy |cosy dy (36)
Kz Bo(1- Ac) Py cosy
Finally, performing the remaining integral and ssimplifying, we arrive at the result
nx (cosy cos@sing +sinf cos¢)
Kx +ny(sindsing - cosy cosfcosg) - nzcosHsiny
Ky |=V| nx(cosfcosg- cosysinfsing) (37)
Kz +ny(cosfsing +cosy sinfcosg) +nzsindsiny
0
where
V = 7P(b- a)(-nxSinysing +nysSiny cos¢ - nz cosy)
.[B1(3+Ac) cosa sina - Bo(2sin?a - cos?a)] (39)

3.4 Force and Torque Components Due to Radiation Pressure on the “ Flattop” Surface

Now we will calculate the torque due to an incident pressure on the top of the frustum, the “flattop”.
Lettinga—~0, b-a, anda ~ % inegs. (37), (38), (34), and (35), we find
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nx (cosy cosfsing +sinf cos¢)
Kx +my(sinfsing - cosy cosfcosg) - mzcosOsiny
Ky |=W/| znx(cosfcos¢- cosy sinfsing) (39)
Kz +my(cosfsing +cosy sinfcosg) +nzsindsiny
0
where
W= 7Pa?h(1- A7)(- nx siny sing + 7y Siny cosg - 77 COSy) (40)

and where At istheflattop (“Top”) abedo.

4 The Equations of Motion

Now we may substitute the torque contributions from the cone surface and from the flattop surface,
egs. (37) and (39), into the equations of motion, egs. (13). Doing so, we find, after some algebra, that

do U
a = Q¢ i
dy i
o T v i
de I
ST Ly v (41)
SNy Qp = [(1- B)Qp - W+P)cosy Qy |Qy + Ky(abha,Ac, AT, 0, ¥) |
%Q.,, = [ﬁ COSWQ% - (1- ﬁ)QQQ(p]sim// + Ka(a,b,h,a,Ac, AT, 0, ¥) :
smz//%Qg = [(1+ﬂc052y/)§2¢, - (1- ﬂ)COSV/QH]Q(// + Kz(a,b,h,a,Ac, AT, 0, v) 'b
where
Ki(a,b,h,a,Ac,At,0,¥) = G(a,b,h,a,Ac,AT) - 91(p, w) Y
Ka(a,b,h,a,Ac,At,0,y) = G(a,b h,a,Ac,AT) - 92(p, ) ?/ (42)
Ka(ab,h,a,Ac,A1,0,¥) = G(a,b,h,a,Ac,At) - 93(¢, ¥) b
do(p. W) = - mxSiNg SNy +ysiny coSp - mzCoSy u
91(p.¥) = dolp, )+ (wx cosp + my sing) _ ’{/ )
g2(9, %) = doly, ) (nx cosy sing - my cosy oSy - mz Siny) i
93(¢, ) = - 91(p, w) cosy b
G(a,b,h,a,Ac,AT) = Gc(ab,ha,Ac) + Gr(a h, A7) :J
Gc(a, b ha,Ac) = %(b- a)[(l- AC+2ACcosza)(hsina+ac03a)g;g :::
2 2 v (44)
- l(3+A )COSGM ¥
. 3 ) C sina i
Gt(a,h,A = +—(1- At)a‘h I
7( T) |Xy( 7) |o
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Noticethat, evenif w = ¢ =y = ¢ = O initidly, the torques will drive nutation and precession anyway.

Equations (41)-(44) are the final form for our symmetric, conically shielded spinning spacecraft.
They consist of terms describing force-free motion (the terms containing b), with the addition of per-
turbative terms due to pressures on the top of the spacecraft and on the protective conical shield.
These equations have been implemented in the numerical program, SymTop.

5 Precession

In this section, let us assume a fast-spinning top, so that Qy >>Q,, Q. Further, assume the pressure
terms are small. Take the last three equations of egs. (41), differente them, substitute egs. (41) for the
first-order derivativesin the resulting equations. Finally, drop terms beyond first order in the small
guantities. We find the resulting second-order system of ODES,

. d?
sin WWQ(/;

u

|

> .I.
%Qy/ = (1' ﬂ)ZQ%QW = (1' ﬁ) QH Kl(a) b) h,anAC,ATu(ﬂ) l//) y (45)

|

2 e
Sinl//%ﬂf) [(1- ﬁ)2Q§Q¢siny/ - (1- BQyKa(a,b,h,a,Ac, AT, 0, l//)]COSl// Ib

Notice that the value of b merely scalesthetime. Since Qg islarge, we can assumeit is slowly vary-
2
ing compared to Q, and Q,,. Hence, we may set %Qg ~ 0. There are two consequences of this

from egs. (45). First, the second equation implies simple harmonic mostion for €2,,. Letting
Qg — const, we have as solution

-(1- H2QZQ,siny + (1- f)QyKa(a b ha,Ac, AT, 0, p)

K1(a,b,h,a ,Ac,AT,0,w)
(1- ﬂ) Qp

Notice the superimposed constant. Thisimplies asmall, monotonic drift in the inclination angle v .
The second consequence is that we can solve for the precession rate. For the third equation of egs.
(45) to hold, we require

Qy ~Acos((1- f)Qyt) +Bsin((1- f)Qpt) - (46)

O~ Ko(a, b, h,a,Ac,AT,0,v)
- (1- pQysiny

If we further assume that the pressure is mainly along the fixed-frame Z axis, nz >> ny, ny, then eq.
(47) becomes

(47)

cos?y - sin?
siny

Q,~ 717008y - (% SNg - 7y COSQ) Y 1G@b,ha,Ac,AT) (48)

iz
(1- Py
This equation becomes more clear by further letting 7x =7y =0, 7z =1, Ac=Ar=Aand a= %
Then we have
_(1- A)rb?h
7 (1 By Qg

Recall that y istheinclination of the symmetry axis to the fixed-frame Z axis.

Q Pcosy (49)

page 9 of 10



5.1 Precession Nulling

We may adjust the cone angle a to control the precession rate. Let usfind the angle such that the pre-
cession isnulled (i.e., the torques cancel out). From eq. (48), we see that this requires

G(a,b,h,a,Ac,AT)=0 (50)
Referring to eg. (44), we find that thisis equivaent to requiring
(b- a)l(1- Ac +2Ac cos?a)(hsina +acosa)(a+b)
- $(3+Ac)(@? +ab+b?)cosa ]+@- Ar)a?hsing = 0 (51)

The only physically meaningful solution of eq. (51) for a will be near %

[Plug and chug...]

AN
6 Numerical Results for the Combined ] \
Effects of Solar Wind and Solar Radia- \
tion Pressures o]

[Blah blah blah...] o
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